

Morning (Time: 2 hours)	Paper Reference 4PM0/02

Further Pure Mathematics

Paper 2

Calculators may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
- there may be more space than you need.

Information

- The total mark for this paper is 100 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Answer all ELEVEN questions.

Write your answers in the spaces provided.
You must write down all the stages in your working.

1 Solve the equation $3 \log _{3} x-8 \log _{x} 3=10$

Question 1 continued

2 (a) Using the axes below, sketch the line with equation
(i) $y+2 x=-5$
(ii) $y=x+4$

Show the coordinates of the points where each line crosses the coordinate axes.
(b) Show, by shading, the region R defined by the inequalities

$$
y+2 x>-5 \quad y<x+4 \quad x<1
$$

Question 2 continued

3 Referred to a fixed origin O, the position vectors of the points P and Q are $(5 \mathbf{i}+6 \mathbf{j})$ and $(3 \mathbf{i}-4 \mathbf{j})$ respectively.
(a) Find, as a simplified expression in terms of \mathbf{i} and $\mathbf{j}, \overrightarrow{P Q}$.
(b) Find a unit vector parallel to $\overrightarrow{P Q}$.

The position vector of the fixed point R is $(13 \mathbf{i}+a \mathbf{j})$, where a is a constant.
Given that $\overrightarrow{Q R}=5 \overrightarrow{Q P}$
(c) find the value of a.

Question 3 continued

4 A particle P is moving along the x-axis. At time t seconds $(t \geqslant 0)$ the velocity, $v \mathrm{~m} / \mathrm{s}$, of P is given by $v=4 \sin 2 t$
(a) Find the least value of t for which the velocity of P is $2 \mathrm{~m} / \mathrm{s}$.
(b) Find the magnitude of the acceleration of P when its velocity is $2 \mathrm{~m} / \mathrm{s}$.

The particle P is at the point with coordinates $(3,0)$ when $t=\frac{\pi}{4}$
(c) Find the distance of P from the origin when $t=0$

Question 4 continued

Diagram NOT accurately drawn

Figure 1
Figure 1 shows a triangular pyramid $A B C D$ where triangle $A B C$ is the base and $B D$ is perpendicular to the base.

$$
A B=15 \mathrm{~cm} \quad A C=5 \sqrt{10} \mathrm{~cm} \quad B C=5 \mathrm{~cm} \quad B D=10 \mathrm{~cm}
$$

(a) Show that $\angle A B C=90^{\circ}$
(b) Find, in degrees to 1 decimal place, the size of $\angle D A C$.

The point X on $A C$ is such that $B X$ is perpendicular to $A C$.
(c) Find, in degrees to 1 decimal place, the size of $\angle D X B$.

Question 5 continued

Question 5 continued

Question 5 continued

Diagram NOT accurately drawn

Figure 2
Figure 2 shows a water tank in the shape of a hollow right circular cone fixed with its axis of symmetry vertical. A diameter of the circular rim of the cone is $A B$. The vertex, C, of the cone is below $A B$ such that $\angle A C B=60^{\circ}$

Initially, the tank is empty and water flows into the tank at a constant rate of $0.03 \mathrm{~m}^{3} / \mathrm{s}$. At time t seconds after the water starts to flow into the tank, the height of the surface of the water in the tank above C is h metres.

Find, in m / s to 3 significant figures, the rate of change of the height of the surface of the water above C at the instant when $h=1.5$

Question 6 continued

7 (a) Complete the table of values for $y=\ln (3 x+1)+2$, giving your answers to 2 decimal places.

x	0	1	2	3	4	5	6
y	2		3.95	4.30			4.94

(b) On the grid opposite, draw the graph of $y=\ln (3 x+1)+2$ for $0 \leqslant x \leqslant 6$
(c) Use your graph to obtain an estimate, to 1 decimal place, for the value of $\ln 10.6$ You must show clearly how you have used your graph.
(d) By drawing a straight line on the grid, obtain estimates, to 1 decimal place, for the roots of the equation $(3 x+1)^{2}=\mathrm{e}^{(x+1)}$ in the interval $0 \leqslant x \leqslant 6$

Question 7 continued

Turn over for a spare grid if you need to redraw your graph.

Question 7 continued

Question 7 continued
Only use this grid if you need to redraw your graph.

8 The roots of the equation $3 x^{2}-2 x-1=0$ are α and β, where $\alpha>\beta$
Without solving the equation,
(a) find the value of $\alpha^{2}+\beta^{2}$
(b) show that $\alpha-\beta=\frac{4}{3}$
(c) form a quadratic equation, with integer coefficients, that has roots $\frac{\alpha+\beta}{\alpha}$ and $\frac{\alpha-\beta}{\beta}$
(6)

Question 8 continued

Question 8 continued

Question 8 continued

Diagram NOT accurately drawn

Figure 3
Figure 3 shows part of the curve C with equation $y=(2 x+3)^{\frac{1}{2}}$ and the line l with equation $2 y=x+3$
The line l crosses C at two points.
(a) Find the coordinates of each of these points.

The finite region bounded by C and l, shown shaded in Figure 3, is rotated through 360° about the x-axis.
(b) Use algebraic integration to find, in terms of π, the volume of the solid generated.

Question 9 continued

Question 9 continued

Question 9 continued

10 A geometric series has first term a and common ratio $r(r>0)$ The nth term of the series is U_{n}

Given that $U_{1}+3 U_{2}=8$ and that $U_{2} \times U_{3}=4 U_{5}$
(a) find
(i) the value of r
(ii) the value of a
(b) Hence show that $U_{n}=\frac{2^{n+2}}{3^{n}}$
(c) Find the least value of n such that $U_{n}<0.05$

Question 10 continued

Question 10 continued

Question 10 continued

$$
\cos (A+B)=\cos A \cos B-\sin A \sin B
$$

(a) (i) Using the above identity, show that

$$
\cos 2 x=1-2 \sin ^{2} x
$$

(ii) Hence show that

$$
\begin{equation*}
\frac{13 \sin x-2 \cos 2 x-10}{4 \sin x-3}=4+\sin x \tag{7}
\end{equation*}
$$

(b) Hence solve, in radians to 3 significant figures, the equation

$$
10+2 \cos \left(2 \theta+\frac{\pi}{3}\right)-13 \sin \left(\theta+\frac{\pi}{6}\right)=2 \sin \left(\theta+\frac{\pi}{6}\right)+8
$$

for $\pi \leqslant \theta \leqslant 2 \pi$
(c) Find the exact value of

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}}\left(\frac{13 \sin x-2 \cos 2 x-10+4 x \sin x-3 x}{4 \sin x-3}\right) d x \tag{5}
\end{equation*}
$$

Question 11 continued

Question 11 continued

Question 11 continued

Question 11 continued

